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Abstract
The study of emergent languages in deep multi-agent simula-
tions has become an important research field. While targeting
different objectives, most studies focus on analyzing proper-
ties of the emergent language—often in relation to the agents’
inputs—ignoring the influence of the agents’ perceptual pro-
cesses. In this work, we use communication games to inves-
tigate how differences in perception affect emergent language.
Using a conventional setup, we train two deep reinforcement
learning agents, a sender and a receiver, on a reference game.
However, we systematically manipulate the agents’ perception
by enforcing similar representations for objects with specific
shared features. We find that perceptual biases of both sender
and receiver influence which object features the agents’ mes-
sages are grounded in. When uniformly enforcing the simi-
larity of all features that are relevant for the reference game,
agents perform better and the emergent protocol better cap-
tures conceptual input properties.
Keywords: language emergence, deep learning, reinforce-
ment learning, groundedness

Introduction
Sparked by the rapid advances in machine learning, there has
been growing interest in studying language emergence in ar-
tificial agents that communicate to solve a common task. The
underlying idea is that language derives its meaning from its
use, and accordingly many of its aspects cannot be captured
by supervised learning. Different research objectives come
together in this new framework. On the one hand, it is used
to analyze how artificial agents communicate and to improve
this communication, for example in terms of learning speed,
performance, or generalization ability (e.g., Das et al., 2019;
Kharitonov & Baroni, 2020). On the other hand, it is used to
investigate the pressures leading to the emergence of natural
language properties, such as compositionality (e.g., Lazari-
dou, Hermann, Tuyls, & Clark, 2018; Harding Graesser, Cho,
& Kiela, 2019; Rodrı́guez Luna, Ponti, Hupkes, & Bruni,
2020).

Fundamentally, a shift from supervised learning to ground-
ing language in interactions with the environment requires an
understanding of how linguistic expressions relate to that en-
vironment as experienced through perception (Harnad, 1990).
This is definitely important when using deep multi-agent sim-
ulations for drawing conclusions about the emergence of nat-
ural language properties. In natural language, the formation
of linguistic expressions is strongly influenced by percep-
tion, not only for concrete concepts like colors (Regier, Kay,
& Khetarpal, 2007) but also abstract ones (Lakoff & John-
son, 1980). While neural networks commonly used as vi-

sual modules in artificial agents exhibit parallels to how the
brain processes information, there are also important differ-
ences (Lake, Ullman, Tenenbaum, & Gershman, 2017). E.g.,
Peterson, Abbott, and Griffiths (2018) show that object repre-
sentations in humans differ from those in neural networks in
terms of similarity judgements, which in turn leads to differ-
ent semantic relationships. Even if the objective is to improve
communication between artificial agents, awareness of how
to best process sensory input is crucial. For example, sus-
ceptibility to adversarial attacks or inherent biases of neural
networks may pose challenges to the formation of efficient
protocols. Taking these points into consideration, modern
language emergence research should account for the entan-
glement of perception and the formation of language.

Although the field has experimented with various setups,
the role of perceptual processes has been largely ignored.
Many designs skip any form of perception by using sym-
bolic input (e.g., Bouchacourt & Baroni, 2019; Kharitonov
& Baroni, 2020). Others use pixel input, which is more re-
alistic, and can capture natural differences in object appear-
ance (e.g., Havrylov & Titov, 2017; Rodrı́guez Luna et al.,
2020). Notably, Bouchacourt and Baroni (2018) examine the
alignment between agents’ internal representations and con-
ceptual input properties to determine whether emergent lan-
guage captures such properties or relies on low-level pixel
information. However, all these setups extract object rep-
resentations from pretrained convolutional neural networks
(CNNs), and do not manipulate the perceptual process sys-
tematically. While emergent language and agents’ represen-
tations can be related to differences in the input, the impact
of differences in perception remains undetermined.

When using pretrained classifiers as visual modules, one
cannot control the resulting similarities between object rep-
resentations. However, developing a system of similarity re-
lationships along relevant perceptual dimensions (e.g., color,
shape, magnitude, texture) is an integral part of human con-
cept formation and judgments of similarity are central for
many cognitive processes (Gärdenfors, 2004). The transition
from defining object similarities based on global perceptual
resemblance, to having a system of dimension-sensitive sim-
ilarities, is therefore an important step in child development
(Smith, 1989). With this in mind, our goal is to use emergent
language games as an experimental method for evaluating
the impact of enforcing particular object relationships, based
on perceptual differences along basic quality dimensions, in



order to explore the relationship between neural representa-
tions, similarity relationships, and emergent communication
strategies.

Ideally, perceptual representations are manipulated di-
rectly, irrespective of input stimulus. We show how this can
be achieved via relational label smoothing (Marino, Nieters,
Heidemann, & Hertzberg, 2021). We use a conventional lan-
guage emergence setup with two agents, a sender and a re-
ceiver, playing a reference game. In line with the studies
above, we focus on visual perception and process the pixel
inputs with CNNs. However, during CNN training, we ma-
nipulate the class labels such that for different conditions the
resulting representational similarities between object classes
vary. We use this setup to explore two different directions.
First, we test whether perceptual biases are carried over into
the emergent languages. More precisely, we ask if agents
that perceive object similarities more strongly with respect
to some features than others tend to ground their language
in these specific features. We also evaluate the influence of
sender versus receiver bias on such changes. Second, af-
ter showing that CNN representations do not preserve object
similarities accurately, we test whether enforcing the preser-
vation of similarity relationships for conceptually relevant
features improves language emergence in terms of training
process and emergent protocol.

General Methods
Code, results, and analyses are publicly available.1

Data set
We use the 3dshapes data set (Burgess & Kim, 2018). The
data set contains images of 3D shapes in an abstract room,
with the following aspects being varied: floor color (10 val-
ues), wall color (10 values), object color (10 values), object
size (8 values), object shape (4 values), and object orienta-
tion (15 values). We use a subset of four different object col-
ors (red, turquoise, purple, yellow), and four different object
sizes (equally spaced from smallest to largest); amounting to
96000 different images. For our purpose, we define objects by
size, shape and color of the geometric shape, such that there
are 43 = 64 different objects. So, the term ‘object’ refers to
an object class, such as ‘tiny red cube’, with each image rep-
resenting an instance (or example) of such an object.

Communication game
Two agents, sender S and receiver R, play a reference game
where one round of the game proceeds as follows.

1. A random object is selected as target, t.

2. S sees an image of t and produces a message. Mes-
sages have length L and consist of a sequence of words
(w1, ...,wL) from vocabulary V .

3. R sees a possibly different image of t and additionally k
random distractor images, showing objects other than t (so
1https://osf.io/83z5x/

differing in at least one of the three concept-defining fea-
tures). Based on the message from S, it tries to select the
target object.

If the receiver selects the target object, the agents receive a
positive reward, r = 1, else r = 0. We use vocabulary size
|V | = 4, message length L = 3, and k = 2 distractors in all
simulations. In principle, this allows agents to use a distinct
word for each object and thereby to achieve maximal reward.
As the number of distractors is low, however, the agents may
achieve relatively high rewards with suboptimal strategies. It
is in the variation of such local solutions that we hope to iden-
tify linguistic differences that reflect perceptual biases.

Reinforcement learning
The sender maps the input object, o, to a probability dis-
tribution over messages, πS(m | o), by sequentially generat-
ing a probability distribution across words conditioned on the
words produced so far. The receiver maps the input message
onto a probability distribution over objects, πR(o | m). These
distributions define the agents’ policies. The agents mini-
mize the negative expected reward, −E[r], and their trainable
weights are updated using REINFORCE (Williams, 1992).
During training, actions are sampled from the policies; dur-
ing testing, the arguments of the maxima are used.

Agent model
Sender and receiver have very similar architectures. The
model components and their interactions in the communica-
tion game are shown in Figure 1.

Vision module. Each agent uses a CNN as vision module,
v(·). The CNN is pretrained on an object classification task,
and the agents use the output of the penultimate fully con-
nected layer as object representation. The weights of the vi-
sion module remain fixed during the communication game.

Language module. Each agent has a language module,
l(·), consisting of an embedding layer and a gated recurrent
unit (GRU) layer. The sender has an additional fully con-
nected layer, which we call hidden-to-word, htow(·). At each
time step t it projects the GRU hidden state, ht , to a log
probability distribution across words, forming the sender’s
policy πS(m = (w1, ...,wL) | o) = ∏

L
t=1 πS(wt | ws<t ,o), with

πS(wt | ws<t ,o) ∝ exp
(
htow(ht)

)
.

Vision-to-hidden layer. Each agent has a fully connected
layer, vtoh(·), mapping from vision to language module. For
the sender, this layer is used to initialize the GRU hidden
state. For the receiver, the dot product between vision-to-
hidden output and final GRU hidden state determine its selec-
tion policy: πR(o | m) ∝ exp

(
vtohR(vR(o)) · lR(m)

)
.

Training
We use a train/validation split of 0.75/0.25.

CNN pretraining. The architecture consists of two convo-
lutional layers with 32 channels, followed by two fully con-

https://osf.io/83z5x/


Figure 1: Schematic visualization of sender and receiver architecture and their interaction in one round of reference game. The
initial input to the sender’s language module, 〈S〉, is a zero vector of the same dimensionality as the embedding layer.

nected layers with 16 nodes, and a final softmax layer. The
first convolutional layer is followed by a 2× 2 max pooling
layer. We use stochastic gradient descent (SGD) with learn-
ing rate 0.001 and batch size 128, and train for 200 epochs.

Communication game. We train agents for 150 epochs us-
ing Adam with learning rate 0.0005 and batch size 128. Em-
bedding and GRU layer each have a dimensionality of 128.
We add an entropy regularization term (Mnih et al., 2016) of
0.02 to sender and receiver loss to encourage exploration.

Relational label smoothing. In order to enforce perceptual
biases in the CNN models, we use a form of relational label
smoothing based on work by Marino et al. (2021), which cal-
culates the target at training time as a sum of the usual one-hot
target, y0, and a relational component, yr, according to

y = σyr +(1−σ)y0 , (1)

where σ ∈ R is the smoothing factor, controlling the strength
with which the relationship(s) should be enforced.

To enforce object similarities along one specific object fea-
ture (or dimension), f , we make use of the single-level hi-
erarchical version of relational label smoothing. If i is the
true object class, we define superclass Ci as the set of object
classes having the same feature value as i for f . Then yr is
given by

yri j =

{
(n−1)−1 j ∈Ci and i 6= j

0 else , (2)

where n is the number of object classes in Ci. In order to
enforce multiple feature relationships in a single model, we
generalize the previous definition to include yr to be a sum
over relational components,

yr =
1
N

N

∑
f=1

yr f , (3)

where N is the number of feature relationships, and yr f rep-
resents the relational component from feature f .

Evaluation: Perception analysis metrics
Let F = {color, shape, size} be the set of object features and
A f all values that feature f ∈ F can take on, e.g. Asize =
{tiny, small, big, huge}. All feature values together define
the set of attributes, A =

⋃
f∈F A f .

Representational similarities. For every class (object
type), ci ∈C, we extract the agent’s visual representations for
N = 100 images, using v(·), and calculate the average cosine
similarity between all pairwise combinations of classes:

simi, j =
1

N2

N

∑
k=1

N

∑
l=1

cossim(v(oi
k),v(o

j
l )) ,

where oi denotes an instance of class ci. As the vision module
output lies in positive space simi, j ∈ [0,1].

Feature-wise perceptual bias. Let ai
f ⊂ A f be the value of

feature f in class ci. To analyze whether an agent is biased to-
wards a specific feature f , we calculate the average similarity
between object classes having the same value for that fea-
ture, as well as the average similarity between object classes
having different values for that feature. The perceptual bias,
B( f ), is calculated by subtracting the two values:

B( f ) = Avg
{

simi, j1[ai
f =a j

f ]

}
−Avg

{
simi, j1[ai

f 6=a j
f ]

}
,

for i 6= j. In our case B( f ) ∈ [−1,1], where 1 means maximal
bias, 0 no bias, and −1 maximal anti-bias.

Evaluation: Language analysis metrics
Feature-wise effectiveness. We aim to measure how much
information about individual features is contained in the mes-
sages. We extract 10000 random images from the training set



and use the trained sender to generate corresponding mes-
sages. Given a specific feature, f , we extract the object’s
feature value, o f ∈ A f , for each image. The conditional en-
tropy of the objects’ feature values, O f , given the generated
messages, M,

H(O f |M) =− ∑
m∈M, o f∈O f

p(m,o f ) log
p(m,o f )

p(m)
,

quantifies how much information about feature f is not com-
municated in the messages. We can therefore define the
feature-wise effectiveness score as

E(O f ,M) = 1−
H(O f |M)

H(O f )
,

where H(O f ) is the marginal entropy of the feature values.
The average effectiveness across all features,

E(O f ,M) =
1
|F | ∑

f∈F
E(O f ,M) ,

can be used to measure how well all conceptually relevant
features are communicated.

Zero-shot generalization. Zero-shot generalization mea-
sures how well the agents generalize to unfamiliar data. We
retrain agents on a subset of the training data, leaving out
specific objects for testing. We leave out four different ob-
jects with distinct values for each class-defining feature, such
that all 3 ·4 = 12 feature values are covered.

Residual entropy. The residual entropy can be used to
measure a strong form of compositionality, where each fea-
ture is encoded by the words at specific positions of the mes-
sage (Resnick, Gupta, Foerster, Dai, & Cho, 2020). As the
message length, L = 3, corresponds to the number of fea-
tures, we consider all permutations of word-positions, π =
{1,2,3} → {1,2,3}. For each permutation, p ∈ π, we calcu-
late the residual entropy given that the features, f1 = color,
f2 = size, f3 = shape, are encoded at the message positions
given by the permutation,

RE(p) =
1
|F |

|F |

∑
i=1

H(O fi |M[pi])

H(O fi)
,

with messages, M, and feature values, O f , as above. To mea-
sure compositionality, the permutation creating the smallest
entropy is used, RE = argminp∈π RE(p). The measure ranges
from 0 (compositional) to 1 (not compositional).

Representational similarity analysis (RSA). RSA com-
pares the similarity structure of two sets of representations
(Kriegeskorte, Mur, & Bandettini, 2008). Like Bouchacourt
and Baroni (2018) we use it for pairwise comparisons of
sender space, receiver space, and input space—sender and
receiver space being the respective RNN hidden states. We
calculate the RSA score as the Spearman correlation between

all pairwise cosine distances of representations in one space
and all pairwise cosine distances of the corresponding repre-
sentations in the other space. We represent objects by a k-hot
encoding of their class defining features and use a subset of
50 random examples of each class.

Introducing perceptual biases

Our goal is to systematically manipulate the agents’ percep-
tion. We aim to have four conditions, next to the unmanipu-
lated default. Specific biases for either of the object-defining
features—color, size, and shape—make up three of these con-
ditions. E.g., in the color condition, color similarities are
amplified. In addition, we experiment with an all condition,
where we amplify similarities for all three features simulta-
neously. To introduce these biases, we apply relational label
smoothing to the CNN training. For the individual feature
conditions, we use hierarchical label smoothing, as in Equa-
tions (1) and (2), defining the superclasses by the respective
feature values. E.g., in the color condition, if the training
sample is a red object, the relational component, yr, is a uni-
form distribution of σ/(16−1) across the class indices of the
other 15 red objects. To calculate the relational component
for the all condition, we average all relational components
from the individual feature conditions, as in Equation (3).

Figure 2 illustrates the effects of label smoothing for the
default, color, size, and shape conditions. Shown are pair-
wise similarities between object classes in the penultimate
fully connected layer of the trained CNNs. Object features are
structured periodically in the data set. For object class c, color
is determined by (c−1) mod 16, shape by c−1 mod 4, and
size by

(
(c− 1) mod 16

)
//4, where mod is the modulo

operator, and // division without remainder. These periodic
patterns are reflected in the similarity matrices. However, the
patterns are not perfect as similarities in the penultimate layer
are still influenced by the input topology and not entirely de-
termined by the label distribution.

As the agents’ vision modules use object representations
from the penultimate layer, we quantify the CNN biases for
that layer using the perceptual bias metric. The results in
Table 1 show that targeting specific object features with the
smoothing factor has the intended effect of inducing a per-
ceptual bias for these features. The color, shape, and size
networks are biased towards their specific feature, and only
to that one. The all network is biased towards all three fea-
tures although individual biases are weaker. Even if corrected
for mutual attenuation they only increase to 0.117 for color,
0.099 for size, and 0.112 for shape. In addition, we find a
color bias in the default condition. This inherent color bias
is probably due to the networks’ direct access to color infor-
mation via the RGB channel input (Hill, Clark, Hermann, &
Blunsom, 2020). In conclusion, per default object representa-
tions extracted from CNNs are biased towards color informa-
tion, but relational label smoothing can shift this bias to (even
multiple) other features.



Figure 2: Pairwise class similarities of the penultimate CNN
layer for default, color, size, and shape conditions.

Table 1: Feature-wise perceptual biases, B( f ), in the penulti-
mate fully connected CNN layer for each condition.

default color size shape all
B(color) 0.234 0.507 -0.020 -0.015 0.081
B(size) 0.023 -0.024 0.424 -0.016 0.056
B(shape) 0.004 -0.024 -0.021 0.371 0.074

The influence of differences in perception on
emergent language

We now look at the influence of different perceptual biases
on the emergent language, focusing on two different aspects.
First, we test whether perceptual biases influence what the
agents preferably talk about, i.e. what features they ground
their messages in. Second, we examine whether amplifying
similarities across all class-defining features (all condition)
improves the training process or the emergent language.

Methods
For all CNNs (default, color, shape, size, all) we train a
sender-receiver pair where both agents use the same network
as vision module, and thus have the same bias. In addition,
to evaluate the impact of sender versus receiver bias we run
additional experiments combining a default sender with each
type of receiver, and combining a default receiver with each
type of sender. We report mean and standard deviation across
ten runs for each agent combination.

Results
General performance. All agent pairs learn to communi-
cate successfully, with average validation rewards ranging
from 0.921 to 0.968, with chance being 0.333.

Effect of perceptual biases on language grounding. We
begin by analyzing the effect of perceptual biases on emer-
gent language when both agents have the same bias. We use
the feature-wise effectiveness score to measure how much in-
formation the messages contain about specific features. The
results for each type of bias and each feature are shown in Fig-
ure 3 (A). The five blocks on the x-axis show the perceptual
bias conditions while the three colors encode the three fea-
tures color, size and shape. In the default condition (left) the
messages are strongly grounded in color features. This can
be attributed to the inherent color bias of the default CNN.
Each agent pair with color, size, and shape bias (central three
blocks), grounds its messages to a large extent in the feature
towards which it is biased. If similarities for all three features
are amplified (right), the messages contain a relatively high
amount of information about each feature.

Figure 3: Feature-wise effectiveness for different pairings of
senders and receivers: (A) biased sender and biased receiver,
(B) biased sender and default receiver, (C) default sender and
biased receiver. Perceptual biases are given on the x-axis,
features ( f ) for calculating the effectiveness scores are color
coded. We report means and standard deviations across ten
runs.

Influence of sender versus receiver bias. Feature-wise ef-
fectiveness scores for varying sender bias in combination
with a default receiver are shown in Figure 3 (B), and for
varying receiver bias in combination with a default sender in
Figure 3 (C). The results for default from part (A) are re-
peated as reference. Comparing part (B) to part (A) of the
figure, and singling out the effects of color, shape and size
biases, biasing only the sender has similar effects as bias-
ing both agents. For each of these biases the language is



grounded largely in the corresponding feature. Still, the color
bias of the default receiver leads to an increase in color ef-
fectiveness for the size and shape conditions. Comparing (C)
to (B), also a receiver bias is carried over into the emergent
language, even though its influence is weaker, which can be
seen from the dominating color bias of the default sender.
Looking at the all condition, an interesting pattern emerges.
If both agents have an all CNN as in (A), the message infor-
mation is more evenly distributed across all features than in
the default condition. However, if either of the agents uses a
default CNN, as in (B) or (C), this effect is reversed and the
messages are mostly grounded in color, which is likely be-
cause the ‘flexible’ all agent adapts to the inherent color bias
of the default agent. In sum, perceptual biases of both sender
and receiver are reflected in the emergent language, but due
to the asymmetry of communication the sender bias is more
influential. Also, agents that rely strongly on all conceptually
relevant object dimensions for perceptual categorization can
flexibly adapt their language to suit communication partners
with more narrow perceptual discrimination abilities.

Language improvement. We are interested in whether
sharpening the agents’ perception with respect to class-
defining object features improves language learning or lan-
guage properties. Table 2 compares a pair of all agents, hav-
ing such enhanced perception, to a pair of default agents. Sta-
tistical significance in a two-tailed t-test with α= 0.01 is indi-
cated by an asterisk. In the upper half of the table the training
process is evaluated. While all agents do not learn signifi-
cantly faster than default agents, they do achieve significantly
higher training and validation rewards.

In the lower half of the table the emergent languages are
compared. Differences in zero-shot generalization are not
significant. Generalization ability is largely driven by the
size of the input space (Chaabouni, Kharitonov, Bouchacourt,
Dupoux, & Baroni, 2020), and enforcing conceptually rel-
evant similarities does not seem to yield an additional ad-
vantage. There is also no difference in residual entropy,
and overall there is only little compositional structure in the
languages. This is maybe not surprising given that even
symbolic input—with fully structured object similarities—
increases compositionality in comparison to pixel input but
does not yield high absolute values (Lazaridou et al., 2018).
However, looking at the average effectiveness score across all
features, all agents communicate more conceptually relevant
information than default agents. Together with the feature-
wise effectiveness scores above, it seems that enforcing con-
ceptually relevant similarity structures helps the agents over-
come categorization biases, such that they can better com-
municate all relevant features instead of forming semantic
categories based on individual features. Similarly, the RSA
values show that given the right perceptual similarity struc-
tures, sender and receiver space each stay closer to the input
space. While the RSA score between sender and receiver is
typically high if communication works, RSA scores with re-
spect to the input space indicate how much the emergent lan-

guage captures conceptual rather than low-level input prop-
erties (Bouchacourt & Baroni, 2018). The higher values for
all show that perceiving conceptual differences more clearly
increases their use for linguistic reference.

Table 2: Evaluation of training process (top) and emergent
language (bottom) for a sender-receiver pair with default vi-
sion modules, and one with all vision modules. Acquisition
speed is given by the number of epochs until training reward
r ≥ θ is reached. Displayed are mean and standard deviation
across ten runs, with better values highlighted. ∗ indicates
statistical significance in a two-tailed t-test with α = 0.01.

default all
train reward 0.956 ± 0.006 0.968∗ ± 0.006
validation reward 0.959 ± 0.006 0.968∗ ± 0.006
speed θ = 0.87 2.9 ± 1.1 2.1 ± 0.3

θ = 0.90 5.0 ± 2.8 2.8 ± 0.7
θ = 0.93 13.9 ± 9.5 8.5 ± 10.4

zero-shot reward 0.887 ± 0.026 0.860 ± 0.06
RE 0.773 ± 0.023 0.752 ± 0.028
E(O f ,M) 0.674 ± 0.028 0.736∗ ± 0.037
RSA sender-input 0.289 ± 0.034 0.359∗ ± 0.055

receiver-input 0.378 ± 0.021 0.509∗ ± 0.023
sender-receiver 0.561 ± 0.057 0.546 ± 0.070

Discussion
Deep multi-agent language emergence simulations have be-
come popular over the last years as a means to study language
emergence in artificial agents themselves but also to draw in-
ferences about the formation of natural language properties.
Our experiments show that in a typical language emergence
setup, agents’ perceptual biases shape their linguistic biases.
Importantly, such perceptual biases arise in default architec-
tures and training conditions. For example, the organization
of pixel inputs into dedicated color channels makes color in-
formation more easily accessible than other object informa-
tion, and thereby induces a color bias. Given that this is just
one of many ways in which neural networks process visual in-
put differently from humans, future research should take into
account the effects of such differences.

Besides, we investigate whether enforcing the ‘right’ sim-
ilarity relations in the CNN representations improves emer-
gent communication. Indeed, agents that perceive objects as
similar along category-defining features achieve higher per-
formance in the communication game and can more flexibly
adapt to different communication partners than agents with a
default CNN. In addition, the emergent language suffers less
from semantic categorization biases and better captures all
conceptually relevant features.

The simple task structure with few distractors allows the
agents to resort to local strategies, which we exploit to iden-
tify linguistic biases. The simple data set, where object fea-



tures vary along specific dimensions, allows us to quantify
these biases in a precise way. In future work, it is important
to extend our findings to more complex setups, working with
natural images, and more demanding communication games.
In particular, the effect of enforcing contextually relevant fea-
tures, should be reassessed for tasks that more strongly pres-
sure the agents to develop optimal communication strategies,
e.g. by increasing the number of distractors. Aside from that,
we would like to extend our setup to study the reverse effect
of how language can influence perception, and test whether
the task-based formation of semantic categories can alleviate
perceptual biases and improve visual processing.
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